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Abstract

In this paper the parametric excitation of two one-degree-of-freedom nonlinear aeroelastic oscillators in cross-flow is

considered. This is for example relevant for the understanding of aeroelastic oscillations of bridge stay cables induced

by bridge deck motion. In particular the parametric excitation for a plunge oscillator and a seesaw oscillator are

discussed. The following model equation for the parametric excitation of the aeroelastic oscillators is considered:

.z þ 2b’z þ ½1� k cosðotÞ�z ¼ F ðz; ’z;UÞ: Here, for the plunge oscillator, z denotes the vertical displacement of a mass-

spring-damper system, and for the seesaw oscillator, z denotes the rotation of a seesaw structure around the hinge axis.

F represents the nonlinear aeroelastic force which depends on z; ’z and wind velocity U : Assuming F ; the coefficients of
parametric excitation k and structural damping b to be small, the averaging method can be applied to study the
equation that equation. Note that it is a nonlinear Mathieu equation. Without the parametric excitation one typically

finds an aerodynamic instability for a critical wind velocity above which finite amplitude, periodic oscillations result.

The parametric excitation complicates this simple picture, especially for the seesaw oscillator. Depending on the ratio of

k and b a critical wind velocity may still exist. For some cases though, increasing the wind velocity above the critical
velocity re-stabilizes the trivial solution. Next to the familiar periodic constant amplitude solutions also solutions with

periodically modulated amplitudes and phases are obtained. Criteria for the stability of the trivial solution, the existence

and the stability of various nontrivial (periodic) solutions and their bifurcations are given.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the parametric excitation of two aeroelastic oscillators, plunge and seesaw oscillators,

placed in a homogeneous and uniform wind flow. A schematic sketch of the plunge oscillator and the seesaw oscillator

is given in Figs. 1 and 2, respectively.

The first oscillator is a spring supported cylinder with linear damping. It is restricted to oscillate perpendicular to the

flow direction. If the cylinder has a non-circular cross section and is exposed to a homogeneous and uniform wind flow,

self-excited so called galloping oscillations may arise, see Blevins (1990). Here we assume that the spring supporting the

cylinder has a periodically varying stiffness, causing a parametric excitation, see Fig. 1.
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The second oscillator is a seesaw like structure consisting of a rigid bar hinged around an axis. The bar holds at its

right end a cylinder. On the other end a counter weight is fixed balancing the cylinder with respect to the hinge axis. A

pendulum weight fixed to the bar provides for a restoring moment. Again self-excited galloping oscillations may arise.

In addition an electrical rotor is mounted on the hinge axis and connected to the pendulum weight via a string. The

rotor causes the pendulum weight to slide periodically up and down the arm holding the pendulum, see Fig. 2. In the

model equation this sliding pendulum weight causes a parametric excitation, see for example Van der Burgh (1996).

The main purpose of this paper is to study the influence of a parametric excitation on the well-known aeroelastic

behaviour of the plunge and the seesaw oscillators. Such a study is relevant for the understanding of the aeroelastic

behaviour of coupled structural elements exposed to wind flow. For example, Da Costa et al. (1996) studied the

oscillations of bridge deck or bridge towers. They suggested parametric excitation as the driving mechanism. As a model

equation they found a nonlinear Mathieu equation. They found that the most dangerous situations arise when the

frequency of the parametric excitation is close to one or two times the natural frequency. Haaker and Van der Burgh

(1994) modelled and analyzed the equation of motion of the seesaw oscillator for low flow velocities. The wind forces

then act as a perturbation on the linear Hamiltonian system modelling the unforced oscillations of the seesaw structure

for small amplitudes. Van Oudheusden (1996) investigated the galloping oscillations with a single rotational degree of

freedom under the combined effect of both viscous and frictional damping. He studied how the additional effect of even

slight amounts of frictional damping affects the galloping curve. He provided results from wind tunnel experiments that

confirm the major findings of analysis. Lumbantobing and Haaker (2000, 2002a) considered the aeroelastic oscillations

of a single seesaw and seesaw type oscillators under strong wind conditions. Tondl et al. (2000) considered parametric

excitations for general oscillators with special nonlinear damping. They applied the averaging method to study the

stability of the trivial solution. Lumbantobing and Haaker (2002b) considered the parametric excitation of a nonlinear

aeroelastic seesaw oscillator. They applied the averaging method to study the behaviour of the trivial and the nontrivial

solutions. Here we consider parametric excitation for a plunge oscillator and a seesaw oscillator, respectively. The

model equation we obtain is a nonlinear Mathieu equation. To study the behaviour of the solutions of this equation we

apply the averaging method.

This paper is organized as follows. In Section 2 the parametric excitation of the nonlinear aeroelastic plunge oscillator

is considered. The analysis is started with the derivation of the model equation in Section 2.1 and then followed by the
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Fig. 1. Schematic sketch of the structure of the plunge oscillator.

Fig. 2. Schematic sketch of the structure of the seesaw oscillator with an electrical rotor.

H. Lumbantobing, T.I. Haaker / Journal of Fluids and Structures 19 (2004) 221–237222



analysis of the model equation in Section 2.2. The analysis of the model equation for the linear case is presented in

section 2.2.1 and for the nonlinear case is presented in Section 2.2.2. In Section 2.2.3, some phase portraits for the

averaged equations are presented. In Section 3 the parametric excitation of the nonlinear aeroelastic seesaw oscillator is

considered. The derivation of the model equation for the aeroelastic response of the seesaw oscillator with parametric

excitation is given in Section 3.1. The analysis of this equation is presented in Section 3.2, first the linear analysis in

Section 3.2.1 and then the nonlinear analysis in Section 3.2.2. In Section 3.2.3, some phase portraits for the averaged

equations are presented. In Section 4, some conclusions will be given. Finally, the analytical proofs of Hopf and

pitchfork bifurcations are given in Appendix A.

2. Parametric excitation of a nonlinear aeroelastic plunge oscillator

In this section the parametric excitation of a nonlinear aeroelastic plunge oscillator is analyzed. A quasi steady

approximation for the aeroelastic force is used. Consequently, the equation of motion is derived. The analysis of this

equation is presented, which is based on the averaging method.

2.1. Derivation of the model equation

In Parkinson and Smith (1964), Blevins (1990) and Haaker (1996), the equation of motion for the plunge oscillator is

derived as follows:

m .y þ b ’y þ ky ¼
1

2
rdlU2CN ðaÞ; ð1Þ

where a denotes the so called angle of attack, which in the dynamic situation may be approximated through a ¼ � ’y=U :
Here we assume a periodically varying stiffness according to k ¼ k0 � k1 cosðOtÞ: We introduce the system

parameters o (frequency), e (small parameter) and m (reduced velocity) according to o2 ¼ k0=m; e ¼ rd2l=ð2mÞ and
m ¼ U=ðodÞ:Note that emay be assumed a small parameter due to air density r being of the order 10�3:Defining a new
damping coefficient b and parametric excitation coefficient a according to be ¼ b=ð2moÞ and ea ¼ k1=ðmo2Þ;
respectively, and introducing new variables x and t according to x ¼ oy=U and t ¼ ot; respectively then one gets the
equation

x00 þ 1� ea cos
O
o
t

� �� �
x ¼ eð�2bx0 þ mCN ðaÞÞ; ð2Þ

with a ¼ �x0 and the apostrophe denotes the differentiation with respect to t:
Finally we take for the aerodynamic coefficient curve CN a cubic polynomial CN ¼ c1aþ c2a2 þ c3a3; with c1o0; c3 >

0 [relevant for cylinders with nearly circular cross section; see for example Nigol and Buchan (1981)].

Then the model equation we obtain is

x00 þ 1� ea cos
O
o
t

� �� �
x ¼ eð�ð2bþ c1mÞx0 þ c2mx02 � c3mx03Þ: ð3Þ

This equation is a nonlinear Mathieu equation.

2.2. Analysis of the model equation

In this subsection an amplitude-phase transformation is applied to transform the system (3) to a suitable form for

applying the averaging method.

We define amplitude r and phase c or alternatively euclidean coordinates u and v through

x ¼ rðtÞ cosðtþ cðtÞÞ; ð4Þ

x0 ¼ �rðtÞ sinðtþ cðtÞÞ; ð5Þ

or

x ¼ uðtÞ cosðtÞ þ vðtÞ sinðtÞ; ð6Þ

x0 ¼ �uðtÞ sinðtÞ þ vðtÞ cosðtÞ: ð7Þ

Note that the following relation between the coordinate pairs holds u ¼ r cosðcÞ and v ¼ �r sinðcÞ:
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To obtain the averaged equations in ðr;cÞ or ðu; vÞ coordinates one substitutes expressions (4), (5) or (6), (7) into
Eq. (3). To simplify the equations we transform r-%r=

ffiffiffiffiffi
c3

p
; or equivalently ðu; vÞ- %u=

ffiffiffiffiffi
c3

p
; %v=

ffiffiffiffiffi
c3

p� �
: After setting

O=o ¼ 2þ ed with d a detuning coefficient, and transforming the time ð2þ edÞt-2s; then after neglecting the ‘‘bar’’,
one obtains the following averaged equations for ðr0;c0Þ and for ðu0; v0Þ; respectively (the prime denotes d=ds)

r0 ¼ e �
a

4
sinð2cÞ þ bþ

1

2
c1m

� �
r �
3

8
mr3

� �
; ð8Þ

c0 ¼ e �
d
2
�

a

4
cosð2cÞ

� �
ð9Þ

and

u0 ¼ e � bþ
1

2
c1m

� �
u þ

a

4
�
d
2

� �
v �

3

8
mðuv2 þ u3Þ

� �
; ð10Þ

v0 ¼ e
d
2
þ

a

4

� �
u � bþ

1

2
c1m

� �
v �

3

8
mðu2v þ v3Þ

� �
: ð11Þ

Note that in this paper we choose O=o ¼ 2þ ed; because the most dangerous situations arise when the frequency of the
parametric excitation is close to two times the oscillator frequency, see for example Da Costa et al. (1996) and Verhulst

(1996). Before starting the analysis we show that both a and d may be assumed positive. Suppose a solution of Eqs. (8)
and (9) is denoted as ðrðs; a; dÞ;cðs; a; dÞÞ: Then, if in Eqs. (8) and (9) a is replaced by �a; it is readily shown that the
solution of this new equation follows from the solution of the original equations as follows:

ðrðs;�a; dÞ;cðs;�a; dÞÞ ¼ rðs; a; dÞ;cðs; a; dÞ þ
p
2

� �
:

Similarly, one may show that

ðrðs; a;�dÞ;cðs; a;�dÞÞ ¼ rðs; a; dÞ;�cðs; a; dÞ þ
p
2

� �
:

2.2.1. Stability analysis of the trivial solution

From Eqs. (10) and (11), one obtains the eigenvalues evaluated at ð0; 0Þ as follows l01 ¼ �1
2

c1m� b� 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
and l02 ¼ �1

2
c1m� bþ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
:

Depending on the strength of the parametric excitation a compared to detuning d and structural damping b one
obtains the following cases.

(i) In the case 2d=ao1; both eigenvalues evaluated at (0,0) are real.
Note that l01ol02; so the equilibrium position is stable if l02o0: Even without wind, i.e. m ¼ 0; the equilibrium

position may be unstable, depending on the sign of �bþ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
; that is,

(a) if a2 > 4d2 þ 16b2; i.e., if the parametric resonance is strong compared to detuning and damping, then the
equilibrium position is a saddle for m ¼ 0; in that case a stable nontrivial critical point ðr2;c2Þ exists; note that if m is

increased from zero, one finds that for m ¼ �2b=c1 � 1=ð2c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
; a pitchfork bifurcation occurs in which an

unstable critical point ðr1;c1Þ is born;
(b) if a2o4d2 þ 16b2; then the equilibrium solution is stable for m ¼ 0; on increasing m from zero a critical flow

velocity m ¼ �2b=c1 þ 1=ð2c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
is reached for which a pitchfork bifurcation occurs in which a stable critical

point ðr2;c2Þ is born; increasing m further such that l01 ¼ 0; one finds the second pitchfork bifurcation in which an
unstable critical point ðr1;c1Þ is born.
(ii) In the case 2d=a ¼ 1; the stability of ð0; 0Þ is determined by the sign of �1

2
c1m� b; i.e., a critical flow velocity

mcr
¼ �2b=c1 exists such that the equilibrium position is unstable for m > mcr

: At m ¼ mcr
a pitchfork bifurcation occurs

indicating the loss of stability of the trivial solution and the creation of a stable nontrivial solution.

(iii) In the case 2d=a > 1; both of the eigenvalues are complex. The equilibrium solution is stable if momcr
:We see that

for momcr
; ð0; 0Þ is a stable focus. At m ¼ mcr

; the eigenvalues are purely imaginary which indicates that there exists a
Hopf bifurcation leading to the creation of a stable limit cycle. This limit cycle corresponds to a solution with

periodically modulated amplitudes and phases for the original equation. For m > mcr
; the equilibrium position becomes

an unstable focus.
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2.2.2. Nonlinear analysis

Note that Eqs. (8) and (9) have the following so called rotational symmetry: ðr;cÞ-ðr;cþ pÞ: This indicates that if
ðr;cÞ is a solution of (8) and (9) then ðr;cþ pÞ is also a solution. In the phase portrait the solution ðr;cþ pÞ is obtained
by rotating the solution ðr;cÞ over p: In the sequel we only consider 0pcpp: Setting the right hand side of Eq. (9) to
zero, one gets

cosð2cÞ ¼ �
2d
a
: ð12Þ

We consider again the three cases by extending the linear analysis.

(i) In the case 2d=ao1 there are two solutions for Eq. (12), say c1 and c2: Assume that c1oc2 then sinð2c1Þ > 0 and
sinð2c2Þo0:
From Eq. (8) one gets that r ¼ f�8=ð3mÞða=4 sinð2cÞ þ bþ 1

2
c1mÞg

1=2 and cosð2cÞ ¼ �2d=a: From here one finds that

sinð2cÞ ¼ 71=a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
: For c ¼ c1 then we have r1 ¼ ð8l01=ð3mÞÞ

1=2: The solution ðr1;c1Þ exists for m > �2b=c1 �

1=ð2c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
: Its eigenvalues are l11 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
þ 2bþ c1m and l12 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
> 0: We conclude that

ðr1;c1Þ is always unstable.
For c ¼ c2 then we have r2 ¼ ð8l02=ð3mÞÞ

1=2: The solution ðr2;c2Þ exists for m > �2b=c1 þ 1=ð2c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
: Its

eigenvalues are l21 ¼ �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
þ 2bþ c1m and l22 ¼ �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
o0: The eigenvalue l21o0 if and only if m >

�2b=c1 � 1=ð2c1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4d2

p
: From here we conclude that the solution ðr2;c2Þ is always stable.

(ii) In the case 2d=a ¼ 1 the solutions of Eq. (12) is c2 ¼ p=2: From Eq. (8) one gets r ¼ f8=ð3mÞð�b� 1
2

c1mÞg1=2: The
nontrivial solution is stable and exists for m > mcr

:
(iii) In the case 2d=a > 1 there is no nontrivial solution at all. Instead of this one finds a stable limit cycle born in the

Hopf bifurcation for m ¼ mcr
:

2.2.3. Phase portraits for the averaged equations

Some phase portraits for the averaged equations for the case 2d=ao1 are given in this subsection. Assume a ¼
1; b ¼ 0:5; c1 ¼ �1 and d ¼ 0:125: Then one gets that for a wind velocity m ¼ 0:4 there is only one solution, i.e., the
trivial solution as a stable node, see Fig. 3(a). For m ¼ 0:8 one gets the trivial solution as a saddle and two symmetric
nontrivial solutions as stable nodes, see Fig. 3(b). For m ¼ 1:8 one gets the trivial solution as an unstable node and two
pairs of nontrivial solutions, i.e, two stable nodes and two saddles, see Fig. 3(c).

3. Parametric excitation of a nonlinear aeroelastic seesaw oscillator

In this section the parametric excitation of a nonlinear aeroelastic seesaw oscillator is analyzed. Based on the quasi

steady approach the equation of motion is derived and using the averaging method the analysis of this equation is

presented.
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3.1. Derivation of the model equation

In this paper y denotes the angle of rotation of the seesaw structure around the hinge axis. Following Haaker (1996)
and Haaker and Van Oudheusden (1997), the following equation describes the aeroelastic response of the seesaw

oscillator to a homogeneous uniform wind flow

I .yþ c’yþ mpgh sin y ¼
1

2
rdlRU2CN ðaÞ: ð13Þ

Here I ; c;mp; g and h are the structural moment of inertia, the linear viscous damping coefficient, the pendulum mass,

the gravity constant, and the pendulum length, respectively. The right hand side of Eq. (13) represents the external

aerodynamic force where r; d; l; and R denote air density, a characteristic length of the cross section, the length of the

cylinder and the distance from the cylinder’s axis to the hinge axis, respectively. Finally, U denotes the wind velocity

and a denotes the instantaneous angle of attack.
Assuming periodically varying pendulum length h ¼ h0ð1� 1

2
*h cosðOtÞÞ; one gets

I ¼ I0 � *hmph20 cosðOtÞ þ Oð *h2Þ; ð14Þ

where I0 denotes the structural moment of inertia corresponding with fixed pendulum length h0; *h denotes the relative
amplitude of the periodic variation which is assumed small. So from equations (13) and (14) one obtains

ðI0 � *hmph20 cosðOtÞÞ.yþ c’yþ mpgh0ð1� *h cosðOtÞÞ sin y ¼
1

2
rdlRU2CN ðaÞ þ Oð *h2Þ: ð15Þ

Let n ¼ mph20 and sin yEy; one can rewrite Eq. (15) to become

.yþ
c

I0
1þ

n *h
I0
cosðOtÞ

� �
’yþ

mpgh0

I0
ð1� *h cosðOtÞÞ 1þ

n *h
I0
cosðOtÞ

� �
y

¼
rdlR

2I0
U2CN ðaÞ 1þ

n *h
I0
cosðOtÞ

� �
: ð16Þ

Scaling time with t ¼ ot; where o2 ¼ mpgh0=I0 and introducing e ¼ rldR3=ð2I0Þ; m ¼ U=ðoRÞ; 2be ¼ c=ðI0oÞ and
assuming *h ¼ *ae; then one finds

y00 þ y ¼ e *a 1�
n
I0

� �
cos

O
o
t

� �
y� 2by0 þ m2CN ðaÞ

� �
þ Oðe2Þ: ð17Þ

Letting a ¼ *að1� n=I0Þ > 0; one obtains

y00 þ 1� ea cos
O
o
t

� �� �
y ¼ eð�2by0 þ m2CN ðaÞÞ þ Oðe2Þ; ð18Þ

with a ¼ y� y0=m; see Haaker (1996) and CN ðaÞ ¼ c1aþ c2a2 þ c3a3; c1o0 and c3 > 0: So, the equation becomes

y00 þ y ¼ e a cos
O
o
t

� �
þ c1m2

� �
y� ðc1mþ 2bÞy0 þ c2m2y

2 þ c2y
02 � 2c2myy

0 þ c3m2y
3 �

c3

m
y03

�
� 3c3my

2y0 þ 3c3yy
02�þ Oðe2Þ: ð19Þ

Eq. (19) is a nonlinear Mathieu equation.

3.2. Analysis of the model equation

To reduce complexity in the first order perturbation analysis we set O=o ¼ 2þ d; with d ¼ Oðe2Þ rather than d ¼ OðeÞ;
and thus remove d from our first order averaged equations. We define amplitude r and phase c or alternatively
coordinates u and v through

y ¼ rðtÞ cosðtþ cðtÞÞ; ð20Þ

y0 ¼ �rðtÞ sin ðtþ cðtÞÞ; ð21Þ

or

y ¼ uðtÞ cosðtÞ þ vðtÞ sinðtÞ; ð22Þ

y0 ¼ �uðtÞ sinðtÞ þ vðtÞ cosðtÞ: ð23Þ
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Substituting Eqs. (20)–(23) into (19) one obtains the averaged equations for r and c or for u and v; respectively, as
follows:

r0 ¼ e
1

4
ð�4b� 2c1mþ a sinð2cÞÞr �

3c3

8m
ð1þ m2Þr3

� �
; ð24Þ

c0 ¼ e
a

4
cosð2cÞ þ

c1m2

2
þ
3c3

8
ð1þ m2Þr2

� �
; ð25Þ

or

u0 ¼ e �
c1

2
mþ b

� �
u þ

1

4
ða � 2c1m2Þv �

3c3

8

1

m
þ m

� �
uv2 �

3c3

8
ð1þ m2Þu2v �

3c3

8

1

m
þ m

� �
u3 �

3c3

8
ð1þ m2Þv3

� �
;

ð26Þ

v0 ¼ e þ
1

4
ða þ 2c1m2Þu �

c1

2
mþ b

� �
v þ

3c3

8
ð1þ m2Þuv2 �

3c3

8

1

m
þ m

� �
u2v þ

3c3

8
ð1þ m2Þu3 �

3c3

8

1

m
þ m

� �
v3

� �
:

ð27Þ

3.2.1. Stability of the trivial solution

For the linear analysis of the trivial solution we use the ðu; vÞ-coordinates, i.e. Eqs. (26) and (27). One can find that
ð0; 0Þ is a critical point of (26) and (27).
Transforming u-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jc1jm=ð3c3ð1þ m2ÞÞ

p
*u; v-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jc1jm=ð3c3ð1þ m2ÞÞ

p
*v; and time t-jc1js=2; one finds (after neglecting

the ‘tilde’ and denoting d=ds by the overdot)

’u ¼ e m�
2b
jc1j

� �
u þ

a

2jc1j
þ m2

� �
v � uv2 � mu2v � u3 � mv3

� �
; ð28Þ

’v ¼ e
a

2jc1j
� m2

� �
u þ m�

2b
jc1j

� �
v þ muv2 � u2v þ mu3 � v3

� �
: ð29Þ

Letting p ¼ 2b=jc1j and q ¼ a=ð2jc1jÞ then one obtains

’u ¼ eððm� pÞu þ ðm2 þ qÞv � uv2 � mu2v � u3 � mv3Þ; ð30Þ

’v ¼ eðð�m2 þ qÞu þ ðm� pÞv þ muv2 � u2v þ mu3 � v3Þ: ð31Þ

The eigenvalues evaluated at the critical point ð0; 0Þ are

l1 ¼ ðm� pÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � m4

p
;

l2 ¼ ðm� pÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � m4

p
:

Note that Reðl1Þ > Reðl2Þ always holds, therefore the stability of the trivial solution is determined by Reðl1Þo0:
In absence of parametric excitation, i.e. q ¼ 0; the stability of the trivial solution is completely determined by the sign

of m� p: If mop; the trivial solution is stable; if m > p the trivial solution is unstable. In fact m ¼ p ¼ �2b=c1 is the

familiar critical flow velocity corresponding to the Den Hartog’s criterion for instability. If qa0 and mX
ffiffiffi
q

p
holds then

the trivial solution is stable if mop and unstable if m > p:
It remains to check what happens if qa0 and mo

ffiffiffi
q

p
: In that case both eigenvalues are real. Because of that the

trivial solution is stable if eigenvalue l1 is negative. One gets for m >
ffiffiffi
q

p
dl1
dm

¼ 1�
2m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � m4
p ;

d2l1
dm2

¼ �
6q2m2 � 2m6

ðq2 � m4Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � m2
p

 !
o0;

dl1
dm

ð0Þ ¼ 1; lim
m-

ffiffi
q

p dl1
dm

ðmÞ ¼ �N; l1ð0Þ ¼ q � p:

From these expressions it follows that l1 first increases with increasing m until a maximum value, say l1max ; is reached
and then strictly decreases. Because of that l1 has at most two roots.
One can distinguish between two main cases as follows: A. Case po

ffiffiffi
q

p
: B. Case p >

ffiffiffi
q

p
:

In the ðq; pÞ parameter plane, the cases A and B are separated by the curve p ¼
ffiffiffi
q

p
as shown in Fig. 4.
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A. Case po
ffiffiffi
q

p
:

In this case one finds that l1
ffiffiffi
q

p� �
¼

ffiffiffi
q

p
� p > 0: The region may be divided into two parts. The region

I is the region below of the curves p ¼
ffiffiffi
q

p
and p ¼ q: The region II is the closed region between the curve p ¼

ffiffiffi
q

p
and

the line p ¼ q; see Fig. 4. In region I, one finds l1ð0Þ ¼ q � p > 0: Combined with l1
ffiffiffi
q

p� �
> 0 and d2l1=dm2o0; it

follows that l1ðmÞ is positive for 0omo
ffiffiffi
q

p
: Therefore (0, 0) is unstable.

From the properties of l2ðmÞ it follows that a single root m2 for l2 exists with m2o
ffiffiffi
q

p
: Therefore the trivial solution is

a saddle for mom2 and an unstable node for m2omo
ffiffiffi
q

p
: Finally, for m >

ffiffiffi
q

p
it follows from the assumption po

ffiffiffi
q

p
that

the trivial solution is an unstable focus. In region II, one finds l1ð0Þo0: Combined with dl1=dmð0Þ > 0; d2l1=dm2o0;

and l1
ffiffiffi
q

p� �
> 0 one finds that a single root m1 exists for l1 in the interval 0omo

ffiffiffi
q

p
: Therefore the trivial solution is

stable for mom1 and unstable for m1omo
ffiffiffi
q

p
: For m ¼ m1; a pitchfork bifurcation occurs in which a stable nontrivial

solution is born. The type of the instability also depends on the sign of l2: From the properties of l2 it readily follows
that a single root m2 for l2 exists with m1om2o

ffiffiffi
q

p
: The trivial solution is a saddle for m1omom2 and an unstable node

for m2omo
ffiffiffi
q

p
: Again for m >

ffiffiffi
q

p
; the trivial solution is an unstable focus. One gets a stability diagram for the trivial

solution in the regions I and II as in Figs. 5(a) and 5(b), respectively.

B. Case p >
ffiffiffi
q

p
:

In this case one finds that l1
ffiffiffi
q

p� �
¼

ffiffiffi
q

p
� po0: Note that dl2=dm ¼ 1þ 2m3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � m4

p
> 0; l2ð0Þo0; l2ð

ffiffiffi
q

p
Þo0:

It shows that l2ðmÞo0 for 0omp
ffiffiffi
q

p
:

Above the line p ¼ q one finds l1ð0Þ ¼ �p þ qo0: One obtains two roots if l1max > 0; no root if l1maxo0: The cases are
separated by the case l1max ¼ 0; i.e., the case for which l1ðmÞ has a double root. Solving l1 ¼ 0 and dl1=dm ¼ 0 for m one
obtains a curve gðq; pÞ ¼ 0 in ðq; pÞ-plane on which a double root occurs, with

gðq; pÞ ¼ �p þ
1

6
k �

1

k
þ q2 �

1

6
k �

1

k

� �4 !1=2
; ð32Þ

where k ¼ 54p þ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 81p2

p� �1=3
:

Above g ¼ 0; in the region III, we find l1maxo0; and no root exist. The trivial solution is a stable node for 0omo
ffiffiffi
q

p
:

The stability diagram is shown in 5(c).

Below g ¼ 0; in region IV, we find l1max > 0; and two roots m11 and m12 for l1 are found. The trivial solution is a stable
node for 0omom11: It is a saddle for m11omom12 and again a stable node for m12omo

ffiffiffi
q

p
: Furthermore, it is a stable

focus for
ffiffiffi
q

p
omop and an unstable focus for m > p: The stability diagram is shown in Fig. 5(d).
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Finally, in region V, between the curves p ¼ q and p ¼
ffiffiffi
q

p
; one has l1ð0Þ ¼ �p þ q > 0: In that case a single root m1

for l1 exists. Then the trivial solution is a saddle for 0ompm1; a stable node for m1omo
ffiffiffi
q

p
; stable focus for

ffiffiffi
q

p
omop;

and an unstable focus for m > p: The stability diagram is shown in Fig. 5(e).
Furthermore one can see that for the case p >

ffiffiffi
q

p
at m ¼ p; the system has a purely imaginary pair of eigenvalues. It

indicates the occurrence of a Hopf bifurcation. After a straightforward calculation, one gets the Lyapunov number

s ¼ �
1

8
1�

p2 þ q

�p2 þ q

� �
o0: ð33Þ

See Appendix A.1 for a proof. This Hopf bifurcation therefore indicates the creation of a stable limit cycle in the

averaging equations. This corresponds to oscillations in the original system with periodically modulated amplitudes and

phases.

We finally remark that the zeroes of the eigenvalues l1 and l2 are related to pitchfork bifurcations which involve the
creation of branches of nontrivial critical points. See Appendix A.2 for a proof.

3.2.2. Nonlinear analysis

In the analysis of the nontrivial solutions, the averaged equations in polar coordinates are used. Transforming

Eqs. (30) and (31) into polar coordinates by using u ¼ r cosðcÞ and v ¼ �r sinðcÞ one gets

’r ¼ eððm� p � q sinð2cÞÞr � r3Þ; ð34Þ

’c ¼ eðm2 � q cosð2cÞ � mr2Þ: ð35Þ

Multiplying Eq. (34) by r and setting R ¼ r2 yields

’R ¼ eð2ðm� p � q sinð2cÞÞR � 2R2Þ; ð36Þ

’c ¼ eðm2 � q cosð2cÞ � mRÞ: ð37Þ

Setting the right hand sides of Eqs. (36) and (37) to zero one obtains

AR2 þ BR þ C ¼ 0; R > 0 ð38Þ

with

A ¼ 1þ m2;

B ¼ �2ðm� p þ m3Þ;

C ¼ m4 � q2 þ ðm� pÞ2:
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The zeroes of Eq. (38) are

R1;2 ¼
�B7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

:

Note that every solution of Eq. (38) corresponds to two solutions, ðR0;c0Þ and ðR0;c0 þ pÞ; of Eqs. (36) and (37). Let D

denote the discriminant of (38), then D ¼ 4ðð1þ m2Þq2 � m2p2Þ: One gets two positive zeroes of (38) if C > 0; Bo0; and
D > 0; one positive zero if Co0; a double positive zero if D ¼ 0 and Bo0; no positive zero in other cases.
Note that a pitchfork bifurcation occurs for C ¼ 0; a saddle-node bifurcation occurs for D ¼ 0: Figs. 6 and 7 show

the location of saddle-node bifurcation (SN), pitchfork bifurcation ðPÞ; Hopf bifurcation ðHÞ and saddle-connection
bifurcation (SC) in the ðm; qÞ-plane for p > 1 and po1; respectively. The saddle-node and pitchfork bifurcation curves
have an intersection point Q; in which one gets B ¼ C ¼ D ¼ 0: The coordinates of Q are ðmQ; qQÞ; with mQ ¼ 1

6
k � 2=k;

qQ ¼
ffiffiffi
6

p
=6

� �
p
k
ð�k2 þ 6pk þ 12Þ


 �1=2
; and k ¼ 108p þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ 81p2

p� �1=3
: The equations for the pitchfork bifurcation

curve ðPÞ and the saddle-node bifurcation curve (SN) are

qp ¼ ðm4 þ ðm� pÞ2Þ1=2 and qsn ¼
pmffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p ;

respectively. The coordinate of the minimum point of the pitchfork bifurcation curve is ðmt; qtÞ with mt ¼ 1=6t � 1=t;

qt ¼ ðm4t þ ðmt � pÞ2Þ1=2; and t ¼ 54p þ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 81p2

p� �1=3
: The Hopf bifurcation is found for m ¼ p and qop2: In Figs. 6

and 7, the numbers denote the number of nontrivial critical point of Eqs. (36) and (37) found in each region. The roman

numerals to the right correspond with the stability regions of the linear analysis. Note that Q ¼ ðmQ; qQÞ may be viewed
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Fig. 6. Number of nontrivial solutions, Hopf ðHÞ; saddle connection (SC), saddle-node (SN), and pitchfork ðPÞ bifurcations for case
p > 1:

Fig. 7. Number of nontrivial solutions, Hopf ðHÞ; saddle connection (SC), saddle-node (SN), and pitchfork ðPÞ bifurcations for case
po1:
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as an ‘organizing center’ in the parameter plane in the sense that different dynamical behavior can be found in a

neighborhood of this point. The pitchfork and the saddle-node bifurcation curves divide the ðm; qÞ-parameter plane into
three big regions, i.e.,

(a) the region where one finds no nontrivial solution;

(b) the region where one finds two nontrivial solutions;

(c) the region where one finds four nontrivial solutions.

The number of nontrivial solutions in each region is determined from the number of positive roots of Eq. (38) in that

region.

We now consider Fig. 6, i.e. the case p > 1: For a fixed value of q ¼ q0 such that q0 > p2; starting with a small value of
m; one finds readily two stable nontrivial critical points. Increasing the value of m such that the pitchfork curve is
reached then one gets a pitchfork bifurcation which leads to the creation of two new nontrivial critical points. Two of

them are stable foci and the others are saddles. At the point ðp; p2Þ; on the pitchfork curve, one finds that both of the
eigenvalues of the trivial solution are zero. From this point, the Hopf ðHÞ and the saddle connection (SC) bifurcation
curves start.

For q ¼ q0 such that poq0op2; starting with a small value of m; one finds two stable nontrivial critical points.
Increasing the value of m such that the pitchfork curve is reached one obtains another two nontrivial critical points
(unstable). At m ¼ p; a Hopf bifurcation occurs and a stable limit cycle is born. Increasing the value of m further such
that the SC curve is reached the limit cycle disappears in the saddle connection bifurcation (SC). The four nontrivial

solutions survive though.

For q ¼ q0 such that qQoq0op starting with a small value of m; one gets only a stable trivial solution. Increasing the
value of m such that the pitchfork bifurcation curve is passed, one finds two stable nontrivial critical points and the
trivial solution becomes unstable. Increasing again the value of m such that the pitchfork bifurcation curve is passed
once more, another two unstable critical points are born. However the trivial solution is now stable again. Increasing

the value of m such that the Hopf bifurcation curve is passed one gets a stable limit cycle and four nontrivial solutions.
The critical solution is now unstable focus. After increasing the value of m passed the saddle-node bifurcation curve
(SN), both pairs of nontrivial solutions disappear in a saddle-node bifurcation and only the stable limit cycle survives.

But if one reaches the saddle-node bifurcation curve (SN) first, then after passing the saddle-node bifurcation curve

(SN) both pairs of nontrivial solutions disappear in the saddle-node bifurcation. Finally, increasing the value of m one
gets a stable limit cycle after passing the Hopf bifurcation curve and the trivial solution is an unstable focus.

For q ¼ q0 such that qtoq0oqQ; starting with a small value for m; then one gets only a stable trivial solution.
Increasing the value of m such that the first pitchfork point is reached then one finds one pair of stable critical points
bearing from the pitchfork bifurcation and the trivial solution becomes unstable. Increasing again the value of m; such
that the second pitchfork point is reached then one obtains that the nontrivial critical points disappear and the trivial

solution becomes stable. Furthermore, increasing the value of m; then one obtains a Hopf bifurcation from which the
stable limit cycle is born and the trivial solution becomes an unstable focus.

For q ¼ q0 such that q0oqt; starting with a small value for m; then one gets a stable trivial solution. Increasing the
value of m; one gets a Hopf bifurcation from which the stable limit cycle is born and the trivial solution becomes an
unstable focus.

The story for Fig. 7 is nearly the same as for Fig. 6. The difference is the saddle connection (SC) bifurcation in Fig. 7,

that now corresponds with the creation of a stable limit cycle.

To consider the stability of the nontrivial critical points, one can determine the eigenvalues of the Jacobian from

Eqs. (36) and (37) evaluated at ðr0;c0Þ; where r0 ¼
ffiffiffiffi
R

p
and c0 are determined from the zeroes of Eqs. (36) and (37).

3.2.3. Phase portraits for the averaged equations

In this section some phase portraits for the averaged equations (30) and (31) are given. Some special values for the

parameters are considered to depict the behaviour of the trivial and the nontrivial solutions in the ðu; vÞ-plane.
Depending on the wind velocity m; one finds how the stability of the trivial solution changes and how the nontrivial
critical points and a stable limit cycle appear.

Assuming p ¼ 2 and choosing q ¼ 3:333 then poqop2; one is in the region V, see Fig. 4. The stability diagram of the
trivial solution is shown in Fig. 5(e), with m1 ¼ 1:8243821 and

ffiffiffi
q

p
¼ 1:82565056: The bifurcation diagram is depicted in

region V of Fig. 6. Varying the value of wind velocity m one gets following: At m ¼ 1:7; one finds two nontrivial critical
points as stable foci and the trivial critical point as a saddle. The phase portrait in the ðu; vÞ-plane is shown in the Fig.
8(a). Increasing the value of m such that at m ¼ 1:9 one obtains two pairs of nontrivial critical points, one pair as saddles
and the other pair as stable foci. The trivial solution is a stable focus. The phase portrait is shown in Fig. 8(b).

Increasing the value of m such that m ¼ 2:1 then one gets two pairs of critical points, one pair as saddles and the other
pair as stable foci. The trivial solution is an unstable focus. There is also a stable limit cycle bearing from the Hopf
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bifurcation at m ¼ p ¼ 2: The limit cycle corresponds to oscillations in the original system with periodically modulated
amplitudes and phases. The phase portrait is shown in Fig. 8(c). For m ¼ 4 one finds that the limit cycle has disappeared
in a heteroclinic loop connecting the two symmetric saddle points, when passing the saddle connection curve. The phase

portrait is shown in Fig. 8(d). Finally, for m ¼ 4:1 one obtains that the saddle connection is broken. All solutions tend to
one of the stable foci. The phase portrait is shown in Fig. 8(e).

Assuming p ¼ 0:5 and choosing q ¼ 0:26 then p2oqop and one is in region II, see Fig. 4. The stability diagram of the

trivial solution is shown in Fig. 5(b), with m1 ¼ 0:2472944; m2 ¼ 0:5097236; and
ffiffiffi
q

p
¼ 0:5099020: The bifurcation

diagram is depicted in region II of Fig. 7. Varying the value of wind velocity m one gets the behaviour of the solutions as
follows: Fig. 9(a) depicts the phase portrait for m ¼ 0:1: It shows the trivial solution as a stable node, and no other
critical points exist.

Increasing the value of m such that m ¼ m1 then one of the eigenvalues of the trivial solution is zero. At this point the
pitchfork bifurcation occurs which leads to the exchange of stability of the trivial solution. The trivial solution changes

from a stable node to a saddle, and the first pair of nontrivial solutions is branched off. These are stable nodes.

At m ¼ 0:4 one gets a pair of nontrivial solutions as stable nodes and the zero solution as a saddle. The phase portrait
in ðu; vÞ-plane as in the Fig. 9(b). Increasing the value of m such that m ¼ m2 the second pitchfork bifurcation occurs
where the trivial solution changes from a saddle to an unstable node, and a second pair of nontrivial solutions is

branched off. These are saddles.

Increasing the value of m further such that m ¼ 0:57 then one gets the zero solution is an unstable focus. The phase
portrait in ðu; vÞ-plane is as in Fig. 9(c). Increasing again the value of m such that m ¼ 0:6084 then one gets a stable limit
cycle bearing from the saddle connection bifurcation. Domains of attraction are separated by the stable manifolds of

the two saddles. Inside those manifolds the flow tends to the limit cycle, outside it tends to one of the stable node. The

phase portrait in the ðu; vÞ-plane is shown in Fig. 9(d). Increasing the value of m further such that m ¼ 0:8; one finds
saddle-node bifurcations in which the stable and unstable nontrivial solutions disappear. Only the stable limit cycle

survives and all flow tends to this limit cycle, see Fig. 9(e).
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4. Conclusions

In this paper the parametric excitation of two nonlinear aeroelastic oscillators was studied. In practice, parametric

excitation of structural elements, like bridge stay cables, may be caused by the periodic motion of the bridge deck or the

bridge tower. The induced vibrations are most prominent if the excitation frequency is nearly twice the natural

frequency.

For the plunge oscillator the following results were obtained:

(i) For strong parametric excitation, i.e. when the ratio of detuning d and parametric force coefficient a is small, the

critical flow velocity is shifted to a lower value. For flow velocities above this value stable periodic oscillations were

found. If there is little structural damping, the critical flow velocity shifts to zero, indicating that even in absence of wind

the equilibrium position is unstable.

(ii) For weak parametric excitation, d=ð2aÞ > 1; the well-known critical wind velocity according to Den Hartog’s
criterion was found. Rather than a stable periodic oscillation, one obtains a stable solution with periodically modulated

amplitude and phase.

For the seesaw oscillator the following results were obtained:

(i) The observed behaviour for strong and weak parametric excitation is identical to the behaviour observed for the

plunge oscillator.

(ii) Interesting new dynamics is found when the parametric excitation, the structural damping and the linear

aeroelastic force are some what balanced. In that case a critical flow velocity may still exist, above which the equilibrium

position becomes unstable. However, in some cases the trivial solution re-stabilizes when the flow velocity is increased

above a certain value. This may be understood from the fact that the flow velocity causes an increased detuning between

the excitation frequency and the natural frequency, which effectively reduces the parametric excitation. Increasing the

flow velocity further though, an aeroelastic instability is found for a flow velocity corresponding to Den Hartog’s

criterion. Next to periodic oscillations also stable periodically modulated solutions are found bearing from limit cycles
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Fig. 9. Phase portraits in the region II for p ¼ 0:5 and q ¼ 0:26: (a) m ¼ 0:1; (b) m ¼ 0:4; (c) m ¼ 0:57; (d) m ¼ 0:6084 and (e) m ¼ 0:8:
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in the averaged equations. Both Hopf and saddle connection bifurcations were found responsible for the appearance of

these limit cycles. In some cases constant amplitude periodic solutions and periodically modulated solutions were found

to co-exist.
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Appendix A

In this appendix the existence of the Hopf and pitchfork bifurcations from the seesaw oscillator are considered.

A.1. The Hopf bifurcation

Consider the system below

’u ¼ eððm� pÞu þ ðm2 þ qÞv � uv2 � mu2v � u3 � mv3Þ; ðA:1Þ

’v ¼ eðð�m2 þ qÞu þ ðm� pÞv þ muv2 � u2v þ mu3 � v3Þ: ðA:2Þ

Letting

X ¼
u

v

 !
; A ¼

m� p m2 þ q

�m2 þ q m� p

 !
; and F ¼

f1ðm; u; vÞ

f2ðm; u; vÞ

 !
;

with

f1ðm; u; vÞ ¼ �uv2 � mu2v � u3 � mv3;

f2ðm; u; vÞ ¼ muv2 � u2v þ mu3 � v3;

then we have

’X ¼ eðAXþ FÞ: ðA:3Þ

We now transform Eq. (A.3) into a normal form with

X ¼ TZ; ðA:4Þ

where

T ¼
0 am

1 0

 !
; Z ¼

z1

z2

 !

and am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðm2 þ qÞ=ð�m2 þ qÞ

p
; hence we get

T�1 ¼
0 1

1

am
0

0
B@

1
CA:

From Eq. (A.4) we get u ¼ amz2 and v ¼ z1: So from (A.3) and (A.4) we get

’Z ¼ eððT�1ATÞZþGÞ; ðA:5Þ

with

G � T�1F ¼
g1ðm; z1; z2Þ

g2ðm; z1; z2Þ

 !
;
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T�1AT ¼
m� p �

m2 þ q

am

m2 þ q

am
m� p

0
BBB@

1
CCCA;

g1ðm; z1; z2Þ ¼ mamz21z2 � amz1z
2
2 þ ma3mz32 � z31; ðA:6Þ

g2ðm; z1; z2Þ ¼
1

am
ð�amz21z2 � ma2mz1z

2
2 � a3mz32 � mz31Þ: ðA:7Þ

At m ¼ p we get

’z1

’z2

 !
¼ e

0 �o

o 0

 !
z1

z2

 !
þ

g1ðp; z1; z2Þ

g2ðp; z1; z2Þ

 ! !
; ðA:8Þ

with o ¼ ðp2 þ qÞ=ap > and ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ðp2 þ qÞÞ=ð�p2 þ qÞ

p
> 0: In this case we have a pair of purely imaginary

eigenvalues of Eq. (A.8).

From Eqs. (A.6) and (A.7) we get g1z1z1z1
¼ �1; g1z1z2z2

¼ �a2p; g1z1z1
¼ 2papz2 � 6z1; g1z1z2

¼ 2paPz1 � 2a2pz2; g1z2z2
¼

�2a2pz1 þ 6pa3pz2; g2z2z2z2
¼ �a2p; g2z1z1z2

¼ �1; g2z1z1
¼ �2z2 � 6

p
ap

z1; g2z1z2
¼ �2z1 � 2papz2 and g2z2z2

¼ �2papz1 �
6a3pz2: The Lyapunov number evaluated at (0, 0) is

s ¼
1

16
ðg1z1z1z1 þ g1z1z2z2 þ g2z2z2z2 þ g2z1z1z2 Þ þ

1

16o
ðg1z1z2

ðg1z1z1
þ g1z2z2

Þ � g2z1z2
ðg2z1z1

þ g2z2z2
Þ � g1z1z1

g2z1z1
þ g1z2z2

g2z2z2
Þ;

¼ �
1

8
ð1þ a2pÞ;

o 0: ðA:9Þ

Using the method in Wiggins (1990, p. 277), we conclude that there is a stable limit cycle bifurcating for m ¼ p:

A.2. The pitchfork bifurcation

We consider system (A.3), i.e.

’X ¼ e AXþ Fð Þ: ðA:10Þ

The eigenvalues of A are

l1 ¼ m� p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
and l2 ¼ m� p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
:

Let

T ¼
�bm bm

1 1

 !
then T�1 ¼

1

2

�
1

bm
1

1

bm
1

0
BB@

1
CCA and T�1AT ¼

m� p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
0

0 m� p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
 !

;

with bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
=ðm2 � qÞ: We transform Eq. (A.10) with

X ¼ TZ; ðA:11Þ

where

Z ¼
z1

z2

 !
:

Then we get u ¼ bmð�z1 þ z2Þ; v ¼ z1 þ z2 and

f1ðm; z1; z2Þ ¼ a30z
3
1 þ a21z

2
1z2 þ a12z1z

2
2 þ a03z

2
2;

f2ðm; z1; z2Þ ¼ b30z
3
1 þ b21z

2
1z2 þ b12z1z

2
2 þ b03z

2
2;
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where

a30 ¼ bm � mb2m þ b3m � m; a21 ¼ bm þ mb3m � 3b
3
m � 3m;

a12 ¼ �bm þ mb2m � 3b
2
m � 3m; a03 ¼ �ðbm þ mb2m þ b3m þ mÞo0;

b30 ¼ �ðmbm þ b2m þ mb3m þ 1Þo0; b21 ¼ �mbm þ b2m þ 3mb3m � 3;

b12 ¼ mbm þ b2m � 3mb3m � 3; b03 ¼ mbm � b2m þ mb3m � 1:

Consider that

’Z ¼ eððT�1ATÞZþ T�1FÞ;

¼ e
m� p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
0

0 m� p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
 !

z1

z2

 !
þ

h1ðm; z1; z2Þ

h2ðm; z1; z2Þ

 ! !
; ðA:12Þ

where

h1ðm; z1; z2Þ ¼ a30z31 þ a21z21z2 þ a12z1z22 þ a03z32; ðA:13Þ

h2ðm; z1; z2Þ ¼ b30z
3
1 þ b21z

2
1z2 þ b12z1z

2
2 þ b03z

3
2; ðA:14Þ

with a30 ¼ 1
2
ðb30 � a30=bmÞ; a21 ¼ 1

2
ðb21 � a21=bmÞ; a12 ¼ 1

2
ðb12 � a12=bmÞ; a03 ¼ 1

2
ðb03 � a03=bmÞ; b30 ¼

1
2
ða30=bm þ b30Þ;

b21 ¼
1
2
ða21=bm þ b21Þ; b12 ¼

1
2
ða12=bm þ b12Þ; and b03 ¼

1
2
ða03=bm þ b03Þ:

From Eq. (A.12), l1 ¼ 0 if m� p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p
:We now consider the pitchfork bifurcation at m ¼ ml1 ; i.e. the zero

of eigenvalue l1:We apply the center manifold theory to our system, i.e. to Eq. (A.12), see Wiggins (1990) and Verhulst
(1996). Letting

z2 � hðz1Þ ¼ az21 þ bz31 þ Oð4Þ; ðA:15Þ

dh

dz1
¼ 2az1 þ 3bz21 þ Oð3Þ: ðA:16Þ

At m ¼ ml1 we get

a4z
4
1 þ Oð5Þ � Z2z

2
1 þ Z3z

3
1 þ Oð4Þ; ðA:17Þ

with

a4 ¼ a b30 �
a30

bm

� �
;

Z2 ¼ a m� p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
;

Z3 ¼ m� p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
bþ

1

2

a30

bm
þ b30

� �� �
;

After equating the coefficients of (A.17), we get a ¼ 0 and b ¼ �1
2
ða30=bm þ b30Þ; therefore

hðz1Þ ¼ bz31 þ Oð4Þ:

The flow in the center manifold at m ¼ ml1 is determined by the 1-dimensional system as follows:

’w ¼ g1ðm;w; hðwÞÞ;

¼
1

2
b30 �

a30

2bm

� �
w3 þ Oð5Þ; ðA:18Þ

where a30=ð2bmÞ ¼ � mðm2 � qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
q= ðm2 � qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
> 0:

Using the theorem (13.4) in Verhulst (1996), we conclude that ð0; 0Þ is stable for m ¼ ml1 :
In the center manifold, the flow is determined by

’w ¼ m� p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
w þ

1

2
b30 �

a30

2bm

� �
w3: ðA:19Þ
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Transforming the time t-2bm=ða30 � bmb30Þt then Eq. (A.19) becomes

w0 ¼
2bm

a30 � bmb30
m� p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
w � w3; ðA:20Þ

where the prime denotes the differentiation with respect to t:
Letting sðmÞ ¼ ð2bm=ða30 � bmb30ÞÞ m� p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4 þ q2

p� �
; we can rewrite (A.20) to become

w0 ¼ sðmÞw � w3 ðA:21Þ

We can see that if sðmÞp0 then l1p0: In this case there is one equilibrium solution, i.e. w ¼ 0 which is stable. If sðmÞ > 0
then l1 > 0: In this case there are three solutions, i.e. two stable nontrivial solutions which is branch off at m ¼ ml1 and
an unstable trivial solution. We conclude from Eq. (A.21) that the pitchfork bifurcation exists at m ¼ ml1 :
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